Dedicated to the 90th Anniversary of Academician M.G. Voronkov

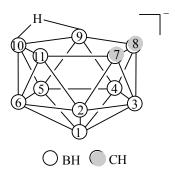
Halogenation of the 7,8-Dicarba-*nido*-undecaborate Anion Derivatives [10-RO-7,8-C₂B₉H₁₁]⁻

M. Yu. Stogniy, I. B. Sivaev, P. V. Petrovskii, and V. I. Bregadze

Nesmeyanov Institute of Organoelemental Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia e-mail: stogniymarina@rambler.ru

Received June 16, 2011

Abstract—Iodination and bromination of 10-alkoxyderivatives of 7,8-dicarba-nido-undecaborate anion $[10\text{-RO-7,8-C}_2B_9H_{11}]^-$ has been studied. The corresponding monoiodo, diiodo and dibromo derivatives were prepared.


DOI: 10.1134/S107036321201015X

Carborane derivatives are promising compounds for use in various fields of medicine, in particular, in radionuclide imaging and boron neutron capture therapy of cancer [1, 2]. The last one is a binary method for cancer treatment where the reaction of two practically harmless components results in formation of highly toxic products destroying the cancer cell. This method is based on selective accumulation of non-radioactive ¹⁰B isotope in cancer followed by their treatment with the thermal neutron flux. The irradiation results in the formation of high linear energy transfer products having short path lengths, comparable with the cell size, that allows selective destruction of tumors cells without damage to healthy tissues [3, 4]. The introduction of a radionuclide halogen label into the carborane cage facilitates considerably the control of distribution of the boron neutron therapy agents in human body and their accumulation in the tumor that allows to choose the optimal time and doses of irradiation, as well as to use them in radionuclide imaging [5, 6].

Earlier we reported the synthesis of carboxy derivatives of 7,8-dicarba-nido-undecaborate anion [10-HOOC-z-C₆H₄O(CH₂CH₂O)-7,8-C₂B₉H₁₁] and [10-HOOC-z-C₆H₄O(CH₂)₄O-7,8-C₂B₉H₁₁] (z = ortho, meta, para) [7], whose terminal functional group can be used for attachment of the carborane fragment to biomolecules specific to cancer cells.

The goal of this work was to study bromination and iodination of the 10-alkoxy derivatives of *nido*-carborane $[10-RO-7,8-C_2B_9H_{11}]^-$.

Earlier it was shown that the reactions of 7,8-dicarba-*nido*-undecaborate anion with halogens result in substitution of the hydrogen atoms at the boron atoms in positions 9 and 11 of the carborane cage with formation of mono- and dihalogen derivatives [9(11)-X-7,8- $C_2B_9H_{11}$]⁻ and [9,11- X_2 - $C_2B_9H_{10}$]⁻ (X = Cl, Br, I) [8–11].

Halogenation of C- [12–15] and B-derivatives [16–19] of 7,8-dicarba-*nido*-undecaborate anion proceeds in a similar way. It should be noted that in the case of asymmetrically substituted derivatives of *nido*-carborane [7(8)-R-7,8-C₂B₉H₁₁], the substitution of one hydrogen atom by halogen results in a mixture of diastereomers [9(11)-X-7(8)R-7,8-C₂B₉H₁₀] and [9(11)-X-8(7)-R-7,8-C₂B₉H₁₀] [15]. Obviously, the halogenation of derivatives with a substituent in the

92 STOGNIY et al.

position 10 of *nido*-carborane [10-RO-7,8-C₂B₉H₁₁] cannot give a mixture of diastereomers and, therefore, is of special interest. The iodine (¹²³I, ¹²⁴I) and bromine (⁷⁵Br, ⁷⁶Br, ⁷⁷Br) isotopes are most often used as a radiohalogen isotopic label in nuclear medicine [20]. That was why our attention was directed to study of iodination and bromination of the 10-alkoxyderivatives [10-RO-7,8-C₂B₉H₁₁] [R = HOOC-4-C₆H₄O(CH₂)₄ (I), HOOC-4-C₆H₄(OCH₂CH₂)₂ (II), MeOOC-4-C₆H₄· (OCH₂CH₂)₂ (III)], prepared by the ring-opening reactions of the tetrahydrofuran and dioxane derivatives of *nido*-carborane [7].

Our attempt to carry out the iodination reaction under the conditions reported earlier for synthesis of the monoiodo derivatives of *nido*-carborane and its C-substituted derivatives (1 equiv. of iodine, reflux in methanol) led to complete oxidative destruction of the carborane cage with the formation of boric acid.

Carrying out the reaction at 0°C and in the presence of small amount of trifluoroacetic acid allowed to suppress the oxidative destruction and resulted in the corresponding monoiodo derivatives **IV** and **V**.

I-III

$$X_2$$
 $X = 1 \text{ or } Br$

VI-IX

I, IV, Z = -, R = H; II, V, Z = O, R = Me; III, Z = O, R = Me; VI, Z = -, X = I; VIII, Z = O, X = I; VIII, Z = -, X = Br; IX, Z = O, X = Br.

The diiodo and dibromo derivatives were obtained by the reaction with the excess of iodine or bromine, respectively, in the presence of trifluoroacetic acid at 0°C.

The structure of the synthesized compounds was established using ¹H and ¹¹B NMR spectroscopy. The ¹¹B NMR spectra of the starting compounds **I–III** contain one singlet of ¹⁰B atom bound to the oxygen at δ_B -9 ppm, and a set of doublets with the ratio of integral intensities 1:2:2:2:1:1. The introduction of one halogen atom to position 9(12) decreases the symmetry of the molecule and removes the degeneracy of the signals. Therefore, two singlets at δ_B –9 and –19 ppm, corresponding to the boron atoms bound to the oxygen and iodine atoms respectively, and seven doublets corresponding to nonequivalent unsubstituted boron atoms are observed in the spectra of monoiodo derivatives IV and V. The introduction of the second halogen atom into the *nido*-carborane cage results in the formation of symmetric molecule and two singlets at δ_B -11 and -23 ppm, corresponding to the boron atoms bound to the oxygen and iodine atoms

respectively, and three doublets from unsubstituted boron atoms at δ_B –15, –21 and –40 ppm with the ratio of integral intensities 1:3:2:2:1 are observed in the ¹¹B NMR spectra of diiodo derivatives **VI** and **VII**. Similarly, the ¹¹B NMR spectra of dibromo derivatives **VIII** and **IX** contain two singlets at δ_B –8 and –13 ppm, corresponding to the boron atoms bound to the bromine and oxygen atoms respectively, and four doublets from unsubstituted boron atoms at δ_B –16, –23, –25, and –41 ppm with the ratio of integral intensities 2:1:2:2:1:1.

The ¹H NMR spectra of the synthesized halogen derivatives contain a set of signals typical for the *para*-substituted aromatic ring. It proves that the reactions of halogenation proceed exclusively at the boron atoms of the carborane cage. It is noteworthy that the introduction of one halogen atom results in a splitting of the signal of the carborane CH protons in the ¹H NMR spectra of compounds **IV** and **V** into two broadened singlets, whereas the introduction of the second halogen atom gives rise to the appearance of the plane of symmetry of the molecule and to a single signal of

the carborane CH protons in the ¹H NMR spectra of compounds **VI–IX**.

All synthesized compounds were isolated as potassium salts, which are readily soluble in water, but, in contrast to the earlier described halogenated derivatives of 7,8-dicarba-*nido*-undecaborate anion, they are poorly stable at storage and are slowly oxidized in the air at room temperature.

Therefore, we have prepared and characterized the monoiodo, diiodo and dibromo derivatives $K[10-(4-HOOCC_6H_4O)-C_4H_8O-7,8-C_2B_9H_{11}]$ and $K[10-(4-ROOCC_6H_4O)-CH_2CH_2OCH_2CH_2O-7,8-C_2B_9H_{11}]$ (R = H or CH₃). The obtained results are of interest for the design of the drugs for the radionuclide imaging and boron neutron capture therapy of cancer.

EXPERIMENTAL

Salts K[10-(4-HOOCC₆H₄O)-C₄H₈O-7,8-C₂B₉H₁₁] (**I**) and K[10-(4-HOOCC₆H₄O)-CH₂CH₂OCH₂CH₂O-7,8-C₂B₉H₁₁] (**II**) were synthesized by the earlier described procedures [7]. ¹H and ¹¹B NMR spectra were registered on a Bruker Avance-400 spectrometer. The chemical shifts are given relative to Me₄Si and BF₃·Et₂O, respectively.

Potassium 10-{2-[2-(4-methylcarboxyphenoxy)ethoxylethoxy\undecahydro-7,8-dicarba-nido-undecaborate (III). A mixture of 0.80 g (3.6 mmol) of $[10-O(CH_2CH_2)_2O-7,8-C_2B_9H_{11}], 0.55 g (3.6 mmol) of$ methyl p-hydroxybenzoate, and 5.01 g (22.7 mmol) of K₂CO₃ in 60 ml of acetonitrile was refluxed for 6 h. After cooling of the reaction mixture, the excess of K₂CO₃ was filtered off, the filtrate was evaporated in a vacuum. To the obtained residue 10 ml of ethanol and 2 ml of water was added. The solution was partially evaporated at a reduced pressure and cooled to 0°C. The formed precipitate was filtered off and dried over P₂O₅ to obtain 0.95 g (66%) of solid. ¹H NMR spectrum (acetone- d_6), δ , ppm: -0.5-2.9 br.s (10H, BH), 1.50 s (2H, CH_{carb}), 3.62 m (4H, OCH₂), 3.83 s (3H, CH₃), 3.86 t (2H, OCH₂), 4.25 t (2H, OCH₂), 7.08 d (2H, Ar), 7.95 d (2H, Ar). ¹¹B NMR spectrum (acetone- d_6), δ_B , ppm (J, Hz): -9.5 s (1B), -12.5 d (2B, J 135), -17.3 d (2B, J 134), -23.8 d (2B, J 154), -25.2 d (1B, J 177), -40.5 d (1B, J 142).

Potassium 10-[4-(4-carboxyphenoxy)butoxy]-9(11)-iododecahydro-7,8-dicarba-nido-undecaborate (IV). To the solution of 0.2 g (0.48 mmol) of I in 10 ml of methanol several drops of trifluoroacetic acid were added and the solution was cooled to 0°C. To the

obtained mixture 0.12 g (0.48 mmol) of I₂ in 10 ml of methanol was added dropwise in the course of 20 min. The solvent was removed under a reduced pressure. To the obtained residue 15 ml of water was added and the target product was extracted with 30 ml of CH₂Cl₂. The solvent was removed in a vacuum to obtain 0.17 g (69%) of oily product. 1 H NMR spectrum (CD₃OD), δ, ppm: 1.3–3.2 br.s (10H, BH), 1.62 s (1H, CH_{carb}), 1.74 m (4H, OCH₂CH₂CH₂CH₂O), 2.21 s (1H, CH_{carb}), 3.88 m (2H, OCH₂CH₂CH₂CH₂O), 4.29 m (2H, OCH₂CH₂CH₂CH₂CH₂O), 6.83 d (2H, Ar), 7.91 d (2H, Ar). 11 B NMR spectrum (CD₃OD), δ_B, ppm (*J*, Hz): –5.5 d (1B, *J* 133), –10.5 s (1B), –12.7 d (1B, *J* 133), –16.9 d (1B, *J* 133), –19.4 d (1B, *J* 163), –19.9 s (1B), –22.9 d (1B, *J* 147), –25.8 d (1B, *J* 137), –40.4 d (1B, *J* 142).

Potassium 10-{2-[2-(4-methylcarboxyphenoxy)-ethoxy]ethoxy}-9(11)-iododecahydro-7,8-dicarba-*nido***-undecaborate (V)**. The synthesis was performed similar to **IV** using 0.06 g (0.15 mmol) of **III** and 0.04 g (0.15 mmol) of I₂. 0.05 g (63%) of an oily product was obtained. ¹H NMR spectrum (acetone- d_6), δ, ppm: 0.5–3.0 br.s (10H, BH), 1.53 s (1H, CH_{carb}), 2.19 s (1H, CH_{carb}), 3.62 m (4H, OCH₂), 3.83 s (3H, CH₃), 3.86 m (2H, OCH₂), 4.25 m (2H, OCH₂), 7.06 d (2H, Ar), 7.94 d (2H, Ar). ¹¹B NMR spectrum (acetone- d_6), δ_B, ppm (J, Hz): –5.1 d (1B, J 138), –8.8 s (1B), –17.3 d (1B, J 140), –19.1 d (1B, J 160), –19.6 s (1B), –24.0 d (1B, J 162), –25.5 d (1B, J 160), –26.9 d (1B, J 143), –40.4 d (1B, J 145).

Potassium 10-[4-(4-carboxyphenoxy)butoxy]-9,11diiodononahydro-7,8-dicarba-nido-undecaborate (VI). To the solution of 0.09 g (0.20 mmol) of I in 10 ml of methanol several drops of trifluoroacetic acid was added. The mixture was cooled to 0°C, and the solution of 0.50 g (2.00 mmol) of I₂ in 15 ml of methanol was added dropwise in the course of 15 min. The mixture was stirred for 15 min at 0°C and for another 30 min at room temperature. The solvent was removed under a reduced pressure. To the obtained precipitate 15 ml of water was added, the target product was extracted with CH₂Cl₂ (2×30 ml). Organic fractions were combined and the solvent was removed in a vacuum. The product was purified from iodine by column chromatography with silica. After removal of the solvent, 0.09 g (71%) of an oily product was obtained. ¹H NMR spectrum (CD₃OD), δ, ppm: 0.5– 3.0 br.s (10H, BH), 1.77 m (4H, OCH₂CH₂CH₂CH₂O), 2.13 s (2H, CH_{carb}), 3.64 m (1H, OCH₂CH₂CH₂CH₂O), 3.96 m (1H, OCH₂CH₂CH₂CH₂O), 4.30 m (2H, OCH₂CH₂CH₂CH₂O), 6.83 d (2H, Ar), 7.90 d (2H,

Ar). ¹¹B NMR spectrum (CD₃OD), δ_B , ppm (*J*, Hz): -11.4 s (1B), -14.7 d (3B, *J* 140), -20.7 d (2B, *J* 144), -22.8 s (2B), -39.6 d (1B, *J* 141).

Potassium 10-{2-[2-(4-carboxyphenoxy)ethoxy] ethoxy}-9,11-diiodononahydro-7,8-dicarba-*nido***undecaborate (VII)**. The synthesis was performed similar to **VI** using 0.06 g (0.14 mmol) of compound **II** and 0.35 g (1.40 mmol) of I₂. As a result 0.06 g (66%) of an oily product was obtained. ¹H NMR spectrum (CD₃OD), δ, ppm: 0.4–3.0 br.s (10H, BH), 1.99 s (2H, CH_{carb}), 3.61 m (2H, OCH₂), 3.74 m (2H, OCH₂), 3.78 m (1H, OCH₂), 3.86 m (1H, OCH₂), 4.32 m (2H, OCH₂), 6.73 d (2H, Ar), 7.78 d (2H, Ar). ¹¹B NMR spectrum (CD₃OD), $\delta_{\rm B}$, ppm (*J*, Hz): –11.2 s (1B), –14.9 d (3B, *J* 141), –20.8 d (2B, *J* 155), –22.8 s (2B), –39.7 d (1B, *J* 143).

Potassium 10-{2-[2-(4-carboxyphenoxy)ethoxy]-**ethoxy}-9,11-dibromononahydro-7,8-dicarba**-*nido*-**undecaborate (IX).** The synthesis was performed similar to **VI** using 0.12 g (0.27 mmol) of compound **II** and 0.43 g (2.70 mmol) of Br₂. In result 0.10 g (67%) of an oily product was obtained. ¹H NMR spectrum (CD₃OD), δ, ppm: 0.5–3.0 br.s (10H, BH), 1.96 s (2H, CH_{carb}), 3.59 m (2H, OCH₂), 3.72 m (2H, OCH₂), 3.75 m (1H, OCH₂), 3.3 m (1H, OCH₂), 4.1 m (2H, OCH₂), 6.72 d (2H, Ar), 7.75 d (2H, Ar). ¹¹B NMR spectrum (CD₃OD), δ_B , ppm (*J*, Hz): -7.9 s (2B), -13.3 s (1B), -16.5 d (2B, *J* 138), -23.3 d (2B, *J* 154), -24.8 d (1B, *J* 161), -41.1 d (1B, *J* 145).

ACKNOWLEDGMENTS

This work was performed with the financial support from the Russian Foundation for Basic Research (grant no. 10-03-00698).

REFERENCES

- 1. Valliant J.F., Guenther K.J., King A.S., Morel P., Schaffer P., Sogbein O.O., and Stephenson K.A., *Coord. Chem. Rev.*, 2002, vol. 232, nos. 1–2, p. 173.
- 2. Sivaev, I.B. and Bregadze, V.I., *Eur. J. Inorg. Chem.*, 2009, no. 11, p. 1433.
- 3. Soloway, A.H., Tjarks, W., Barnum, B.A., Rong, F.-G., Barth, R.F., Codogni, I.M., and Wilson, J.G., *Chem. Rev.*, 1998, vol. 98, no. 4, p. 1515.
- 4. Sivaev, I.B. and Bregadze, V.I., *Ross. Khim. Zh.*, 2004, vol. 48, no. 4, p. 109.
- 5. Hawthorne, M.F. and Maderna, A., *Chem. Rev.*, 1999, vol. 99, no. 12, p. 3421.
- 6. Tolmachev, V. and Sjoberg, S., *Collect. Czech. Chem. Commun.*, 2002, vol. 67, no. 7, p. 913.
- Stogniy, M.Yu., Abramova, E.N., Lobanova, I.A., Sivaev, I.B., Bragin, V.I., Petrovskii, P.V., Tsupreva, V.N., Sorokina, O.V., and Bregadze, V.I., Collect. Czech. Chem. Commun., 2007, vol. 72, no. 12, p. 1676.
- 8. Olsen, F.P. and Hawthorne, M.F., *Inorg. Chem.*, 1965, vol. 4, no. 12, p. 1839.
- 9. Pak, R.H., Kane, R.R., Knobler, C.B., and Hawthorne, M.F., *Inorg. Chem.*, 1994, vol. 33, no. 23, p. 5355.
- 10. Semin, G.K., Zakharkin, L.I., Kuznetsov, S.I., Zhigareva, G.G., and Bryukhova, E.V., *Russ. J. Gen. Chem.*, 1998, vol. 68, no. 6, p. 919
- 11. Santos, E.C., Pinkerton, A.B., Kinkead, S.A., Hurlburt, P.K., Jasper, S.A., Sellers, C.W., Huffman, J.C., and Todd, L.J., *Polyhedron*, 2000, vol. 19, no. 15, p. 1777.
- 12. Rudakov, D.A., Potkin, V.I., Dikusar, E.A., Petrovskii, P.V., Sivaev, I.B., and Bregadze, V.I., *Russ. Chem. Bull. Int. Ed.*, 2007, vol. 56, no. 5, p. 922.
- 13. Ellis, D., Garrioch, R.M., Rosair, G.M., and Welch, A.J., *Polyhedron*, 2006, vol. 25, no. 4, p. 915.
- 14. Mizusawa, E.A., Thompson, M.R., and Hawthorne, M.F., *Inorg. Chem.*, 1985, vol. 24, no. 12. p. 1911.
- 15. Green, A.E.C., Parker, S.K., and Valliant, J.F., *J. Organomet. Chem.*, 2009, vol. 694, no. 11, p. 1736.
- 16. Polyanskaya, T.M., *J. Struct. Chem.*, 2006, vol. 47, no. 5, p. 887.
- Timofeev, S.V., Rudakov, D.A., Rakova, E.A., Glukhov, I.V., Starikova, Z.A., Bragin, V.I., Godovikov, I.A., Shirokii, V.L., Potkin, V.I., Maier, N.A., Sivaev, I.B., and Bregadze, V.I., *J. Organomet. Chem.*, 2007, vol. 692, no. 23, p. 5133.
- 18. Rudakov, D.A. and Potkin, V.I., *Vesti Nats. Akad. Nauk Belarusi*, 2009, no. 4, p. 69.
- 19. Timofeev, S.V., Prikaznova, E.A., Starikova, Z.A., Godovikov, I.A., and Bregadze, V.I., *J. Organomet. Chem.*, 2010, vol. 695, nos. 12–13, p. 1688.
- 20. Adam, M.J. and Wilbur, D.S., *Chem. Soc. Rev.*, 2005, vol. 34, no. 2, p. 153.